文章编号:1004-4213(2010)09-1627-4

利用两个 EPR 态完全隐形传输四粒子 W 态*

马刚龙,查新未

(西安邮电学院 应用数理系,西安 710061)

摘 要:为了减少量子隐形传态中的测量次数和运算量,提出了一个利用两个 EPR 对作为量子信 道,实现四粒子 W 纠缠态的隐形传输的方案.发送者 Alice 只需利用 16 个正交完备测量基对要传 送的未知四粒子纠缠 W 态和两个 EPR 对中属于自己的粒子做一次正交完备基测量,然后将测量 所产生的 16 种塌陷态结果通过经典信道告知接收者,接收者 Bob 根据这些信息,通过引入两个辅 助粒子 B₃B₄,并对手中拥有的粒子做适当的 Toffoli 门、C-Not 门、Pauli-X 门、Pauli-Z 门变换,就 能将 16 种畸变态全部恢复到发送者 Alice 欲传送的未知四粒子原始量子态,从而以 100%的概率 实现四粒子纠缠 W 态的隐形传输.利用量子力学波函数的叠加原理和变换算符的思想,很容易得 出正交完备基测量后的 16 种塌陷态表达式和接收者 Bob 所做的由量子门组成的幺正变换的表达 式.该方案中由于采用了正交完备基测量的方法,大大减少了发送者所需要做的测量计算,而且整 个方案只需要一次正交完备基测量和由各种量子逻辑门组成的简单幺正变换,实现更为容易. 关键词:隐形传态;正交完备测量基;四粒子 W 态

中图分类号:O431 文献标识码:A

0 引言

自 Bennet 等人^[1]提出量子态传输的思想之后, 量子态的隐形传输就成了量子信息领域最重要的研 究对象之一,在近几年得到迅速而广泛的推广^[2-5]. 郑亦庄^[6]等提出利用三个二粒子纠缠态作为量子信 道,实现三粒子纠缠 W 态的隐形传态的方案;张国 华^[7]等提出利用两个二粒子部分纠缠态作为量子信 道,实现四粒子纠缠态的概率隐形传输方案;闫丽 华^[8]等提出利用两个 EPR 态作为量子信道隐形传 送任意三原子 W 的方案;刘敏^[9]等给出了利用四个 Bell 对纠缠通道来传送四粒子纠缠 W 态的方案.但 在这些传案中,发送者欲传送未知的量子态,需要 进行 Bell 基测量、Handamard 变换、Von-Neuman 测量等.

本文提出利用两个 EPR 对作为量子信道,实现四粒子 W 纠缠态的隐形传输的方案.由量子力学 波函数的叠加特性及算符变换出发^[10-11],将量子隐 形态的体系的总量子态按正交完备基展开,接受者 通过引入辅助粒子,然后对自己拥有的粒子进行相 应的变换,就可使粒子处于待发送的原始量子态. doi:10.3788/gzxb20103909.1627

1 四粒子 W 量子态的隐形传送

假设发送者 Alice 想要传送一个由粒子 *a*₁、*a*₂、 *a*₃、*a*₄ 组成的未知四粒子纠缠 W 态

$$|w\rangle_{a_{1}a_{2}a_{3}a_{4}} = (\alpha|0001\rangle + \beta|0010\rangle + \gamma|0100\rangle + \delta|1000\rangle_{a_{1}a_{2}a_{3}a_{4}}$$
(1)

给接受者 Bob,其中 $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1$. 为将未知的 量子态 $|w\rangle_{a_1a_2a_3a_4}$ 传送给遥远的接收者 Bob ,发送 者 Alice 和接受者 Bob 之间假设建立两个 EPR 对 作为量子通道^[12-13].

$$|\varphi\rangle_{A_1B_1} = 1/2^{1/2} (|00\rangle + |11\rangle)_{A_1B_1}$$
 (2)

$$|\varphi\rangle_{A_2B_2} = 1/2^{1/2} (|00\rangle + (11\rangle)_{A_2B_2}$$
 (3)

假设 Alice(发送方)拥有粒子 a_1 、 a_2 、 a_3 、 a_4 和粒子 (A_1, A_2) , Bob 拥有粒子 (B_1, B_2) , 则总的量子态为

 $\begin{aligned} |\psi\rangle_{s} &= |\chi\rangle_{a_{1}a_{2}a_{3}a_{4}} \otimes |\varphi\rangle_{A_{1}B_{1}} \otimes |\varphi\rangle_{A_{2}B_{2}} = \\ 1/2(\alpha|00010000\rangle + \alpha|00010011\rangle + \alpha00011100\rangle + \\ \alpha|00011111\rangle + \beta|00100000\rangle + \beta|00100011\rangle + \\ \beta|00101100\rangle + \beta|00101111\rangle + \gamma|0100000\rangle + \\ \gamma|01000011\rangle + \gamma|01001100\rangle + \gamma|01001111\rangle + \\ \delta|10000000\rangle + \delta|10000011\rangle + \delta|10001100\rangle + \\ \delta|10001111\rangle\rangle_{a_{1}a_{2}a_{3}a_{4}}A_{1}B_{1}A_{2}B_{2} \end{aligned}$ (4)

接着,Alice 对手中的粒子 a₁、a₂、a₃、a₄、A₁、A₂进行 正交完备基测量,其测量基为

 $|\varphi^{1}\rangle = 1/2(|000100\rangle + |001001\rangle + |010010\rangle + |010010\rangle + |100011\rangle)_{a_{1}a_{2}a_{3}a_{4}A_{4}A_{5}}$ (5.1)

$$|\varphi^{2}\rangle = 1/2(|000100\rangle + |001001\rangle - |010010\rangle -$$

^{*}陕西省自然科学基金(2009JM1007)资助

Tel:029-88166094Email:328762444@163.com收稿日期:2010-01-21修回日期:2010-05-06

$ 100011\rangle$) _{$a_1a_2a_3a_4A_1A_2$}	(5.2)
$ \varphi^{3}\rangle = 1/2(000110\rangle + 001011\rangle + 010000000000000000000000000000000000$	$+\langle 000 \rangle$
$ 100001\rangle$) _{$a_1a_2a_3a_4A_1A_2$}	(5.3)
$ \varphi^{4}\rangle = 1/2(000110\rangle + 001011\rangle - 010000000000000000000000000000000000$	$-\langle 000 \rangle$
$ 100001\rangle$) _{$a_1a_2a_3a_4A_1A_2$}	(5.4)
$ \varphi^{5}\rangle = 1/2(000100\rangle - 001001\rangle + 010000\rangle + 0000000000\rangle + 0000000000000000$	010 > +
$ 100011\rangle$) _{$a_1a_2a_3a_4A_1A_2$}	(5.5)
$ \varphi^{6}\rangle = 1/2(000100\rangle - 001001\rangle - 01001\rangle$	010 > +
$ 100011\rangle$) _{$a_1a_2a_3a_4A_1A_2$}	(5.6)
$ \varphi^{7}\rangle = 1/2(000110\rangle - 001011\rangle + 010000000000000000000000000000000000$	$-\langle 000 \rangle$
$ 100001\rangle$) _{$a_1a_2a_3a_4A_1A_2$}	(5.7)
$ \varphi^{8}\rangle = 1/2(000110\rangle - 001011\rangle - 010000000000000000000000000000000000$	+(000)+
$ 100001\rangle$) _{a1a2a3a4} A1A2	(5.8)
$ \varphi^{9}\rangle = 1/2(000101\rangle + 001000\rangle + 0100\rangle$	$ 011\rangle +$
$ 100010\rangle$) _{a1a2a3a4} A1A2	(5.9)
$ \varphi^{10}\rangle = 1/2(000101\rangle + 001000\rangle - 01002)$	$ 1\rangle -$
$ 100010\rangle$ _{a1a2a3a4} A1A2	(5.10)
$ \varphi^{11}\rangle = 1/2(000111\rangle + 001010\rangle + 01000 $	$ 1\rangle +$
$ 100000\rangle_{a_1a_2a_3a_4A_1A_2}$	(5.11)
$ \varphi^{i_2}\rangle = 1/2(000111\rangle + 001010\rangle - 01000 0000 0000 0000 0000 0000 0000 0000$	$ 1\rangle - \langle 5, 10\rangle$
$ 100000\rangle$ $_{a_1a_2a_3a_4A_1A_2}$	(5.12)
$ \varphi^{\circ}\rangle \equiv 1/2(000101\rangle - 001000\rangle + 0100.$	(1)
$ 100010\rangle\rangle_{a_1a_2a_3a_4A_1A_2}$	(5.13)
$ \varphi^{-1/2}(000101\rangle - 001000\rangle - 0100\rangle$	(5, 14)
$ 1000107_{a_1a_2a_3a_4A_1A_2} $ $ a^{15}\rangle = 1/2(000111\rangle = 001010\rangle \pm 01000 $	(3, 14)
$ \varphi = 1/2(000111\rangle 001010\rangle + 01000 $	(5, 15)
$ a^{16}\rangle = -\frac{1}{2}(a^{16}\rangle - a^{16}\rangle) - a^{16}\rangle -$	(0.10)
$ 010001\rangle + 100000\rangle)$	(5 16)
「「「「「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」 「	t.
$ \psi_1\rangle_{B,B} = \langle \alpha_1 \psi_2 \rangle = 1/4 \langle \alpha 00 \rangle + \beta 01 \rangle -$	+
$\gamma 10\rangle + \delta 11\rangle B_{R}$	(6.1)
$ \psi^2\rangle_{BB} = 1/4(\alpha 00\rangle + \beta 01\rangle - \gamma 10\rangle -$	
$\delta 11\rangle_{B,B_{\alpha}}$	(6.2)
$ \psi^{3}\rangle_{B,B_{\alpha}} = \frac{1}{4}\langle \alpha 10 \rangle + \beta 11 \rangle + \gamma 00 \rangle +$	
$\delta 01 \rangle_{B_1 B_2}$	(6.3)
$ \psi^4\rangle_{B_1B_2} = 1/4(\alpha 10\rangle + \beta 11\rangle - \gamma 00\rangle -$	
$\delta 01\rangle)_{B_1B_2}$	(6.4)
$ \psi^{5}\rangle_{B_{1}B_{2}} = 1/4(\alpha 00\rangle - \beta 01\rangle + \gamma 10\rangle -$	
$\delta 11 \rangle$) _{B1B2}	(6.5)
$ \psi^{6}\rangle_{B_{1}B_{2}} = 1/4\langle \alpha 00 \rangle - \beta 01 \rangle - \gamma 10 \rangle +$	
$\delta 11 angle)_{_{B_1B_2}}$	(6.6)
$ \psi^{7}\rangle_{B_{1}B_{2}} = 1/4(\alpha 10\rangle - \beta 11\rangle + \gamma 00\rangle -$	
$\delta \left \left. 01 \right\rangle \right)_{B_1 B_2}$	(6.7)
$ \psi^{8}\rangle_{BB} = 1/4(\alpha 10\rangle + \beta 11\rangle - \gamma 00\rangle +$	

$\delta 01 \rangle)_{B_1 B_2}$	(6.8)
$ \psi^{9}\rangle_{B_{1}B_{2}} = 1/4\langle \alpha 01 \rangle + \beta 00 \rangle + \gamma 12$	$1\rangle +$
$\delta 10\rangle$) _{B1B2}	(6.9)
$ \psi^{10}\rangle_{B_1B_2} = 1/4(\alpha 01\rangle + \beta 00\rangle - \gamma 1$	$ 1\rangle -$
$\delta 10\rangle _{B_{1}B_{2}}$	(6.10)
$ \psi^{11}\rangle_{B_1B_2} = 1/4(\alpha 11\rangle + \beta 10\rangle + \gamma 0\rangle$	$ 1\rangle +$
$\delta 00\rangle _{B_1 B_2}$	(6.11)
$ \psi^{12}\rangle_{B_1B_2} = 1/4(\alpha 11\rangle + \beta 10\rangle - \gamma 0\rangle$	$ 1\rangle -$
$\delta 00\rangle _{B_1 B_2}$	(6.12)
$ \psi^{13}\rangle_{B_1B_2} = 1/4(\alpha 01\rangle - \beta 00\rangle + \gamma 1$	$ 1\rangle -$
$\delta 10 angle)_{B_1B_2}$	(6.13)
$ \psi^{14}\rangle_{B_1B_2} = 1/4(\alpha 01\rangle - \beta 00\rangle - \gamma 1$	$ 1\rangle +$
$\delta 10 angle)_{B_1B_2}$	(6.14)
$ \psi^{15}\rangle_{B_1B_2} = 1/4(\alpha 11\rangle - \beta 10\rangle + \gamma 0\rangle$	$ 1\rangle -$
$\delta 00\rangle$) _{B1} B2	(6.15)
$ \psi^{16}\rangle_{B_1B_2} = 1/4(\alpha 11\rangle - \beta 10\rangle - \gamma 0\rangle$	$ 1\rangle +$
$\delta 00\rangle$) _{B1B2}	(6.16)

接收方 Bob 在接受到由发送方 Alice 通过经典信道 传送过来的测量结果后,这时测量结果已经发生畸 变,为了成功得到 Alice 所要传送的未知量子态, Bob 需要引入辅助粒子 $|00\rangle B_3 B_4$,对完备基测量以 后的塌陷态进行幺正变换,从而实现对畸变态的恢 复,例如:当测量基为 $|\varphi^1\rangle$ 时,其塌陷态为,Bob 引入 辅助粒子 $|00\rangle B_3 B_4$ 后,其态为

 $\begin{aligned} | \varphi^1 \rangle_{B_1 B_2} | 00 \rangle_{B_3 B_4} = 1/4 (\alpha | 0000 \rangle + \beta | 0100 \rangle + \\ \gamma | 1000 \rangle + \delta | 1100 \rangle_{B_1 B_2 B_3 B_4} \end{aligned}$

Bob 首先对粒子 B_4 进行(σ_x)操作得

 $|\psi^{1}\rangle_{B_{1}B_{2}}|00\rangle_{B_{3}B_{4}}=1/4(\alpha|0001\rangle+\beta|0101\rangle+$

 $\gamma|1001\rangle + \delta|1101\rangle)_{B_1B_2B_3B_4}$

接着 Bob 以 B_2 为控制位 B_3 为靶位进行 Controlled $-NOT(U_{C-NOT})$ 门操作,得

 $\begin{aligned} |\psi^1\rangle_{B_1B_2} |00\rangle_{B_3B_4} = 1/4(\alpha|0001\rangle + \beta|0111\rangle + \\ \gamma|1001\rangle + \delta|1111\rangle_{B_1B_2B_3B_4} \end{aligned}$

同上,Bob 接着进行了以 B₃ 为控制位 B₂ 和 B₄ 分 别为靶位的 U_{C-NOT} 门操作以及以 B₁ 为控制位 B₃ 为靶位的 U_{C-NOT} 门操作后得

 $\begin{aligned} | \varphi^1 \rangle_{B_1 B_2} | 00 \rangle_{B_3 B_4} = 1/4 (\alpha | 0001 \rangle + \beta | 0010 \rangle + \\ \gamma | 1011 \rangle + \delta | 1000 \rangle_{B_1 B_2 B_3 B_4} \end{aligned}$

然后 Bob 对粒子 B_2 、 B_3 、 B_4 进行以 B_3B_4 为控制位 B_2 为靶位的 Toffoli(T)门变换,得

 $|\psi^{1}\rangle_{B_{1}B_{2}}|00\rangle_{B_{3}B_{4}}=1/4(\alpha|0001\rangle+\beta|0010\rangle+$

 $\gamma |1111\rangle + \delta |1000\rangle _{B_1 B_2 B_3 B_4}$

最后 Bob 对粒子 B_2 、 B_3 、 B_4 分别进行以 B_2 为控制 位, B_3 、 B_4 分别为靶位的 U_{C-NOT} 门操作后得

 $|\psi^{1}\rangle_{B_{1}B_{2}}|00\rangle_{B_{3}B_{4}}=1/4(\alpha|0001\rangle+\beta|0010\rangle+$

γ|0100>+δ|1000>)_{B1B2B3B4}
 设上述所有的变换用 U 表示.可以看到,在
 Bob 做完上述幺正变换后,畸变态即可恢复到 Alice

欲传送的原始量子态,即量子隐形传态成功.其余 15种量子态情况也可用类似方法进行,对应表1.

Table 1	Each collapse state and the corresponding unitary transformation
Collapse state	The corresponding unitary transformation
	$(\sigma_x)_{B_4} (U_{C-NOT})_{B_2B_3} (U_{C-NOT})_{B_3B_2} (U_{C-NOT})_{B_3B_4} (U_{C-NOT})_{B_1B_3}$
$ \Psi^{*}\rangle_{B_{1}B_{2}} 00\rangle_{B_{3}B_{4}}$	$_{{}^{\mathrm{TB}_3B_4},B_2}(U_{\mathrm{C-NOT}})_{B_2B_1}(U_{\mathrm{C-NOT}})_{B_2B_3}(U_{\mathrm{C-NOT}})_{B_2B_4}$
$ \Psi^{2}\rangle_{B_{1}B_{2}} 00\rangle_{B_{3}B_{4}}$	$U(\sigma_z)_{B_1}(\sigma_z)_{B_2}$
$ 1\mathbf{V}^3\rangle = 00\rangle = 00\rangle$	$U(\sigma_x)_{B_2}(\sigma_x)_{B_4 \operatorname{TB}_1 B_2, B_3}(U_{\mathrm{C-NOT}})_{B_3 B_1}(U_{\mathrm{C-NOT}})_{B_3 B_2}$
$ \Psi / B_1 B_2 00/B_3 B_4 $	$(U_{\rm C-NOT})_{B_3B_4}(U_{\rm C-NOT})_{B_1B_3}$
$ \Psi^{4}\rangle_{B_{1}B_{2}} 00\rangle_{B_{3}B_{4}}$	$U(\sigma_x)_{B_2}(\sigma_x)_{B_4 \operatorname{TB}_1 B_2, B_3}(U_{\mathrm{C-NOT}})_{B_3 B_1}(U_{\mathrm{C-NOT}})_{B_3 B_2}$
	$(U_{\mathrm{C-NOT}})_{B_3B_4}(U_{\mathrm{C-NOT}})_{B_1B_3}(\sigma_z)_{B_1}(\sigma_z)_{B_2}$
$ \Psi^{5}\rangle_{B_{1}B_{2}} 00\rangle_{B_{3}B_{4}}$	$U(\sigma_z)_{B_1}(\sigma_z)_{B_3}$
$ \Psi^{6}\rangle_{B_{1}B_{2}} 00 angle_{B_{3}B_{4}}$	$U(\sigma_z)_{B_2}(\sigma_z)_{B_3}$
$ \mathbf{W}^{7}\rangle_{-} = 00\rangle_{-}$	$U(\sigma_{x})_{B_{2}}(\sigma_{x})_{B_{4}\text{TB}_{1}B_{2},B_{3}}(U_{\text{C-NOT}})_{B_{3}B_{1}}(U_{\text{C-NOT}})_{B_{3}B_{2}}(U_{\text{C-NOT}})_{B_{3}B_{4}}$
$ \Psi' _{B_1B_2} 00/_{B_3B_4} $	$(U_{\mathrm{C-NOT}})_{B_1B_3}(\sigma_z)_{B_1}(\sigma_z)_{B_3}$
$ \Psi^{8}\rangle_{B_{1}B_{2}} 00\rangle_{B_{3}B_{4}}$	$U(\sigma_x)_{B_2}(\sigma_x)_{B_4 \operatorname{TB}_1 B_2, B_3}(U_{\mathrm{C-NOT}})_{B_3 B_1}(U_{\mathrm{C-NOT}})_{B_3 B_2}$
	$(U_{ ext{C-NOT}})_{B_3B_4}(U_{ ext{C-NOT}})_{B_1B_3}(\sigma_z)_{B_2}(\sigma_z)_{B_3}$
$ \Psi^{9}\rangle_{B_{1}B_{2}} 00\rangle_{B_{3}B_{4}}$	$U(\sigma_x)_{B_3}(\sigma_x)_{B_4 TB_1 B_3, B_2}(U_{C-NOT})_{B_2 B_1}(U_{C-NOT})_{B_2 B_3}(U_{C-NOT})_{B_2 B_4}$
	$(U_{ m C-NOT})_{B_1B_2}$
$ \boldsymbol{\Psi}^{10}\rangle_{B_1B_2} 00\rangle_{B_3B_4}$	$U(\sigma_x)B_3(\sigma_x)_{B_4TB_1B_3,B_2}(U_{C-NOT})_{B_2B_1}(U_{C-NOT})_{B_2B_3}(U_{C-NOT})_{B_2B_4}$
	$(U_{\mathrm{C-NOT}})_{B_1B_2}(\sigma_z)_{B_1}(\sigma_z)_{B_2}$
Ψ^{11} , p $ 00\rangle$ p p	$U(\sigma_x) B_1(\sigma_x)_{B_4 T B_1 B_2, B_3} (U_{C-NOT})_{B_3 B_1} (U_{C-NOT})_{B_3 B_2} (U_{C-NOT})_{B_3 B_4}$
$\mathbf{r} = B_1 B_2 + 007 B_3 B_4$	($U_{ m C-NOT}$) $B_2 B_3$
$ \Psi^{12}\rangle_{R}$ $ 00\rangle_{R}$ $ 00\rangle_{R}$	$U(\sigma_x)B_1(\sigma_x)_{B_4 T B_1 B_2, B_3} (U_{C-NOT})_{B_3 B_1} (U_{C-NOT})_{B_3 B_2} (U_{C-NOT})_{B_3 B_4}$
$\mathbf{r} = B_1 B_2 + 00 B_3 B_4$	$(U_{\mathrm{C-NOT}})_{B_2B_3}(\sigma_z)_{B_1}(\sigma_z)_{B_2}$
$ \boldsymbol{\Psi}^{13}\rangle_{B_1B_2} 00\rangle_{B_3B_4}$	$U(\sigma_{x})B_{3}(\sigma_{x})_{B_{4}TB_{1}B_{3},B_{2}}(U_{C-NOT})_{B_{2}B_{1}}(U_{C-NOT})_{B_{2}B_{3}}(U_{C-NOT})_{B_{2}B_{4}}$
	$(U_{\mathrm{C-NOT}})_{B_1B_2}(\sigma_z)_{B_1}(\sigma_z)_{B_3}$
$\Psi^{14}\rangle_{BB} _{00}\rangle_{BB}$	$U(\sigma_x)_{B_3}(\sigma_x)_{B_4 T B_1 B_3, B_2}(U_{C-NOT})_{B_2 B_1}(U_{C-NOT})_{B_2 B_3}(U_{C-NOT})_{B_2 B_4}$
· · · · · · · · · · · · · · · · · · ·	$(U_{\mathrm{C-NOT}})_{B_1B_2}(\sigma_z)_{B_2}(\sigma_z)_{B_3}$
$ \Psi^{15}\rangle_{B_1B_2} 00\rangle_{B_3B_4}$	$U(\sigma_x)_{B_1}(\sigma_x)_{B_4 T B_1 B_2, B_3}(U_{C-NOT})_{B_3 B_1}(U_{C-NOT})_{B_3 B_2}(U_{C-NOT})_{B_3 B_4}$
	$(U_{\mathrm{C-NOT}})_{B_2B_3}(\sigma_z)_{B_1}(\sigma_z)_{B_3}$
$ \Psi^{16}\rangle_{BB} 00\rangle_{BB}$	$U(\sigma_x)_{B_1}(\sigma_x)_{B_4 T B_1 B_2, B_3}(U_{C-NOT})_{B_3 B_1}(U_{C-NOT})_{B_3 B_2}(U_{C-NOT})_{B_3 B_4}$
$D_1 D_2 + D_3 D_4$	$(U_{\mathrm{C-NOT}})_{B_2B_3}(\sigma_z)_{B_2}(\sigma_z)_{B_3}$

表 1	各塌陷态及其对应的幺正变换
F . I . II	

2 结论

本文提出了在采用正交完备基测量情况下,利 用两个 EPR 对作为量子信道实现四粒子 W 纠缠态 隐形传输的方案.在这个方案中,由于采用了正交完 备基作为测量基,使得发送方 Alice 所做的测量计 算大量减少.发送方通过经典信道告知接收方自己 的测量结果,接收方通过相应的幺正变换就可使四 粒子的 W 态以 100%的概率实现隐形传输.整个过 程只需要一个正交完备基测量和简单的幺正变换, 实现更为容易.

参考文献

- [1] BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical andEinstein-Podolsky-Rosenchannels [J]. Phys Rev Lett, 1993, 70(13): 1895-1898.
- [2] ZHA Xin-wei, SONG Hai-yang. Non-Bell-pair quantum

channel for teleporting an arbitrary two-qubit state[J]. *Phys* Lett A, 2007, **369**(5-6): 377-379.

[3] LI De-chao, SHI Zhong-ke. The probabilistic teleportation via bi-particle mixed state[J]. Acta Photonica Sinica, 2009, 38 (4): 983-986.
李得超,史忠科.基于混合纠缠态的概率隐形传态[J]. 光子学

学侍超,史忠科.基于混合纠缠念的概举愿形传念[J].尤于学报,2009,**38**(4):983-986.

[4] XU Jian-gang, ZHA Xin-wei. The theoretical analysis of entanglement measure and controlled quantum teleportation for three-qubit states[J]. Acta Sinica Quantum Optica, 2009, 15 (3): 241-243.
徐建刚,查新未. 三体纯态的纠缠度与量子控制隐形传送的理

保建刚, 省新木. 二体纯态的纠缠度与重于控制隐形传达的理论分析[J]. 量子光学学报, 2009, **15**(3): 241-243.

- [5] XU Jian-gang, ZHA Xin-wei. A theoretical analysis of teleportation of N particle quantum state[J]. Acta Sinica Quantum Optica, 2009, 15(4): 325-328.
 徐建刚,查新未.N粒子量子态的隐形传送的理论分析[J]. 量子光学学报,2009,15(4): 325-328.
- [6] ZHENG Yi-zhuang, DAI Ling-yu, GUO Guang-can. Teleportation of a three -particle entangled W state through two-particle entangled quantum channels [J]. Acta Physica

Sinica, 2003, 52(11): 2678-2682.

郑亦庄,戴玲玉,郭光灿. 三粒子纠缠 W 态的隐形传态[J]. 物理学报,2003,**52**(11);2678-2682.

 ZHANG Guo-hua, WANG Mei-yu, YAN Feng-li. Probabilistic teleportation of a four-particle entangled W state
 J. Journal of Hebei Normal University, 2006, 30(3): 293-296.

张国华,王美玉,闫凤利.四粒子纠缠 W 态的概率隐形传输 [J].河北师范大学学报,2006,**30**(3):293-296.

- [8] YAN Li-hua, GAO Yun-feng, ZHAO Jian-gang. Teleportation of an arbitrary three-atom W state through two entangled pairs[J]. Journal of Atoms and Molecules Physics, 2008, 25(6): 1397-1403.
 闫丽华,高云峰,赵建刚.利用两个纠缠对隐形传送任意三原 子 W 态[J].原子与分子物理学报,2008,25(6):1397-1403.
- [9] LIU Min, HUANG Yong-chang, LI Li, et al. Disentanglement of four-particle entanglement-geneal W state and probabilistic teleportation of the general W state [J]. Journal of Atoms and Molecules Physics, 2005, 22(4): 694-700.

刘敏,黄永畅,李黎,等.四粒子纠缠的一般 W 态的退纠缠和

W态的概率隐形传态[J].原子与分子物理学报,2005,22(4): 694-700.

[10] ZHA Xin-wei. Radial basic operators of three-dimensional isotropic harmonic osillator[J]. Acta Physica Sinaca, 2002, 51(4): 723-726.
查新未.三维各向同性谐振子的径向基本算符[J].物理学报,

2002,51(4):723-726.
[11] ZHA Xin-wei, ZHANG Chun-min. Entanglement and kinds of pure three-qubit state[J]. Journal of Xi'an Jiaotong University, 2006, 40(2): 243-246.
查新未,张淳民. 三体纯态的纠缠度及其分类[J]. 西安交通大 学学报,2006,40(2):243-246.

- [12] ZHA Xin-wei, ZHANG Wei. Perfect Teleportation an arbitrary three-particle state [J]. Acta Photonica Sinica, 2009, 38(4): 979-982.
- [13] XIONG Xue-shi, FU Jie, Shen Ke. Controlled teleportation of an unknown two-particle partly entangled state[J]. Acta photonica sinica, 2006, 35(5): 780-782.
 熊学仕,付洁,沈柯. 二粒子部分纠缠未知态的量子受控传递[J]. 光子学报,2006,35(5):780-782.

Teleportation of Four Particles W State Through Two EPR States

MA Gang-long, ZHA Xin-wei

(Department of Applied Mathematics and Applied Physics, Xi'an Institute of Posts and Telecommunications, Xi'an 710061, China)

Abstract: In order to reduce the measurement times and computation of quantum teleportation, a scheme for teleportation of four-particle W state via two EPR states is proposed. The sender Alice only do one orthogonal complete basises measurement on her own particles in the unknown Four-particles and two EPR states, by the means of 16 orthogonal complete measure basises. Then the sender inform the 16 kinds of measurement results to the receiver by classical channel, the receiver introduce two auxiliary particle B_3B_4 , and do some proper transformation(Toffoli gate, C-Not gate, Pauli-X gate, and Pauli-Z gate) on his own particles. As a result, the 16 kinds of collapse modes will be all restored. In other words, the teleportation of four-particle W state is completely realized. Based on quantum mechanics of superposition operator and the transformation operator, the collapses states can be easily obtained, and Bob's unitary transformation can also be easily given. Because of using orthogonal complete measurement basises method, the sender only need to do a little measurement. This scheme only need one orthogonal complete basises measurement and a simply unitary transmission, which can be realized easily.

Key words: Quantum teleportation; Orthogonal complete measure basises; Four-particle W state

MA Gang-long was born in 1984. He is a M. S. degree candidate and his research interests focus on quantum optics and quantum information.

ZHA Xin-wei was born in 1957. Now he is a professor and his research interests focus on quantum optics and quantum information.